36 research outputs found

    Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches

    Get PDF
    In this research, climate classification maps over the Korean Peninsula at 1 km resolution were generated using the satellite-based climatic variables of monthly temperature and precipitation based on machine learning approaches. Random forest (RF), artificial neural networks (ANN), k-nearest neighbor (KNN), logistic regression (LR), and support vector machines (SVM) were used to develop models. Training and validation of these models were conducted using in-situ observations from the Korea Meteorological Administration (KMA) from 2001 to 2016. The rule of the traditional Koppen-Geiger (K-G) climate classification was used to classify climate regions. The input variables were land surface temperature (LST) of the Moderate Resolution Imaging Spectroradiometer (MODIS), monthly precipitation data from the Tropical Rainfall Measuring Mission (TRMM) 3B43 product, and the Digital Elevation Map (DEM) from the Shuttle Radar Topography Mission (SRTM). The overall accuracy (OA) based on validation data from 2001 to 2016 for all models was high over 95%. DEM and minimum winter temperature were two distinct variables over the study area with particularly high relative importance. ANN produced more realistic spatial distribution of the classified climates despite having a slightly lower OA than the others. The accuracy of the models using high altitudinal in-situ data of the Mountain Meteorology Observation System (MMOS) was also assessed. Although the data length of the MMOS data was relatively short (2013 to 2017), it proved that the snowy, dry and cold winter and cool summer class (Dwc) is widely located in the eastern coastal region of South Korea. Temporal shifting of climate was examined through a comparison of climate maps produced by period: from 1950 to 2000, from 1983 to 2000, and from 2001 to 2013. A shrinking trend of snow classes (D) over the Korean Peninsula was clearly observed from the ANN-based climate classification results. Shifting trends of climate with the decrease/increase of snow (D)/temperate (C) classes were clearly shown in the maps produced using the proposed approaches, consistent with the results from the reanalysis data of the Climatic Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC)

    Improving Local Climate Zone Classification Using Incomplete Building Data and Sentinel 2 Images Based on Convolutional Neural Networks

    Get PDF
    Recent studies have enhanced the mapping performance of the local climate zone (LCZ), a standard framework for evaluating urban form and function for urban heat island research, through remote sensing (RS) images and deep learning classifiers such as convolutional neural networks (CNNs). The accuracy in the urban-type LCZ (LCZ1-10), however, remains relatively low because RS data cannot provide vertical or horizontal building components in detail. Geographic information system (GIS)-based building datasets can be used as primary sources in LCZ classification, but there is a limit to using them as input data for CNN due to their incompleteness. This study proposes novel methods to classify LCZ using Sentinel 2 images and incomplete building data based on a CNN classifier. We designed three schemes (S1, S2, and a scheme fusion; SF) for mapping 50 m LCZs in two megacities: Berlin and Seoul. S1 used only RS images, and S2 used RS and building components such as area and height (or the number of stories). SF combined two schemes (S1 and S2) based on three conditions, mainly focusing on the confidence level of the CNN classifier. When compared to S1, the overall accuracies for all LCZ classes (OA) and the urban-type LCZ (OA(urb)) of SF increased by about 4% and 7-9%, respectively, for the two study areas. This study shows that SF can compensate for the imperfections in the building data, which causes misclassifications in S2. The suggested approach can be excellent guidance to produce a high accuracy LCZ map for cities where building databases can be obtained, even if they are incomplete

    Estimation of Spatially Continuous Near-Surface Relative Humidity Over Japan and South Korea

    Get PDF
    Near-surface relative humidity (RHns) is an essential meteorological parameter for water, carbon, and climate studies. However, spatially continuous RHns estimation is difficult due to the spatial discontinuity of in situ observations and the cloud contamination of satellite-based data. This article proposed machine learning-based models to estimate spatially continuous daily RHns at 1 km resolution over Japan and South Korea under all sky conditions and examined the spatiotemporal patterns of RHns. All sky estimation of RHns using machine learning has been rarely conducted, and it can be an alternative to the currently available RHns data mostly from numerical models, which have relatively low spatial resolution. We combined two schemes for clear sky conditions (scheme A, which uses satellite and reanalysis data) and cloudy sky conditions (scheme B, which uses reanalysis data solely). The relatively small numbers of data in extremely low and high RHns conditions (i.e., <30% or >70%, respectively) were augmented by applying an oversampling method to avoid biased training. The machine learning models based on random forest (RF) and XGBoost were trained and validated using 94 in situ observation sites from meteorological administrations of both countries from 2012 to 2017. The results showed that XGBoost produced slightly better performance than RF, and the spatially continuous RHns model combined based on XGBoost yielded the coefficient of determination of 0.72 and a root-mean-square error of 10.61%. Spatiotemporal patterns of the estimated RHns agreed with in situ observations, reflecting the effect of topography on RHns. We expect that the proposed RHns model could be used in various environmental studies that require RHns under all sky conditions as input data

    Classification and mapping of paddy rice by combining Landsat and SAR time series data

    Get PDF
    Rice is an important food resource, and the demand for rice has increased as population has expanded. Therefore, accurate paddy rice classification and monitoring are necessary to identify and forecast rice production. Satellite data have been often used to produce paddy rice maps with more frequent update cycle (e.g., every year) than field surveys. Many satellite data, including both optical and SAR sensor data (e.g., Landsat, MODIS, and ALOS PALSAR), have been employed to classify paddy rice. In the present study, time series data from Landsat, RADARSAT-1, and ALOS PALSAR satellite sensors were synergistically used to classify paddy rice through machine learning approaches over two different climate regions (sites A and B). Six schemes considering the composition of various combinations of input data by sensor and collection date were evaluated. Scheme 6 that fused optical and SAR sensor time series data at the decision level yielded the highest accuracy (98.67% for site A and 93.87% for site B). Performance of paddy rice classification was better in site A than site B, which consists of heterogeneous land cover and has low data availability due to a high cloud cover rate. This study also proposed Paddy Rice Mapping Index (PMI) considering spectral and phenological characteristics of paddy rice. PMI represented well the spatial distribution of paddy rice in both regions. Google Earth Engine was adopted to produce paddy rice maps over larger areas using the proposed PMI-based approach

    Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days

    Get PDF
    Land surface temperature (LST) is used as a critical indicator for various environmental issues because it links land surface fluxes with the surface atmosphere. Moderate-resolution imaging spectroradiometers (MODIS) 1 km LSTs have been widely utilized but have the serious limitation of not being provided under cloudy weather conditions. In this study, we propose two schemes to estimate all-weather 1 km Aqua MODIS daytime (1:30 p.m.) and nighttime (1:30 a.m.) LSTs in South Korea for humid summer days. Scheme 1 (S1) is a two-step approach that first estimates 10 km LSTs and then conducts the spatial downscaling of LSTs from 10 km to 1 km. Scheme 2 (S2), a one-step algorithm, directly estimates the 1 km all-weather LSTs. Eight advanced microwave scanning radiometer 2 (AMSR2) brightness temperatures, three MODIS-based annual cycle parameters, and six auxiliary variables were used for the LST estimation based on random forest machine learning. To confirm the effectiveness of each scheme, we have performed different validation experiments using clear-sky MODIS LSTs. Moreover, we have validated all-weather LSTs using bias-corrected LSTs from 10 in situ stations. In clear-sky daytime, the performance of S2 was better than S1. However, in cloudy sky daytime, S1 simulated low LSTs better than S2, with an average root mean squared error (RMSE) of 2.6 degrees C compared to an average RMSE of 3.8 degrees C over 10 stations. At nighttime, S1 and S2 demonstrated no significant difference in performance both under clear and cloudy sky conditions. When the two schemes were combined, the proposed all-weather LSTs resulted in an average R-2 of 0.82 and 0.74 and with RMSE of 2.5 degrees C and 1.4 degrees C for daytime and nighttime, respectively, compared to the in situ data. This paper demonstrates the ability of the two different schemes to produce all-weather dynamic LSTs. The strategy proposed in this study can improve the applicability of LSTs in a variety of research and practical fields, particularly for areas that are very frequently covered with clouds

    Urban climate characterization and heat risk assessment based on machine learning and remote sensing data

    No full text
    Department of Urban and Environmental Engineering (Environmental Science and Engineering)clos

    High-Resolution Seamless Daily Sea Surface Temperature Based on Satellite Data Fusion and Machine Learning over Kuroshio Extension

    No full text
    Sea SurfaceTemperature (SST) is a critical parameter for monitoring the marine environment and understanding various ocean phenomena. While SST can be regularly retrieved from satellite data, it often suffers from missing data due to various reasons including cloud contamination. In this study, we proposed a novel two-step data fusion framework for generating high-resolution seamless daily SST from multi-satellite data sources. The proposed approach consists of (1) SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using the SSTs derived from two satellite sensors (i.e., Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer 2(AMSR2)), and (2) SST improvement through data fusion using random forest for consistency with in situ measurements with two schemes (i.e., scheme 1 using the reconstructed MODIS SST variables and scheme 2 using both MODIS and AMSR2 SST variables). The proposed approach was evaluated over the Kuroshio Extension in the Northwest Pacific, where a highly dynamic SST pattern can be found, from 2015 to 2019. The results showed that the reconstructed MODIS and AMSR2 SSTs through DINCAE yielded very good performance with Root Mean Square Errors (RMSEs) of 0.85 and 0.60 degrees C and Mean Absolute Errors (MAEs) of 0.59 and 0.45 degrees C, respectively. The results from the second step showed that scheme 2 and scheme 1 produced RMSEs of 0.75 and 0.98 degrees C and MAEs of 0.53 and 0.68 degrees C, respectively, compared to the in situ measurements, which proved the superiority of scheme 2 using multi-satellite data sources. Scheme 2 also showed comparable or even better performance than two operational SST products with similar spatial resolution. In particular, scheme 2 was good at simulating features with fine resolution (~50 km). The proposed approach yielded promising results over the study area, producing seamless daily SST products with high quality and high feature resolution

    Identifying the Impact of Regional Meteorological Parameters on US Crop Yield at Various Spatial Scales Using Remote Sensing Data

    No full text
    This study investigates the influence of meteorological parameters such as temperature and precipitation on gross primary production (GPP) in the continental United States (CONUS) during boreal summer using satellite-based temperature and precipitation indices and GPP data at various scales (i.e., pixel, county, and state levels). The strong linear relationship between temperature and precipitation indices is presented around the central United States, particularly in the Great Plains, where the year-to-year variation of GPP is very sensitive to meteorological conditions. This sensitive GPP variation is mostly attributable to the semi-arid climate in the Great Plains, where crop productivity and temperature are closely related. The more specific information for the regionality of the relationships across the variables manifests itself at higher resolutions. The impact of the summer meteorological condition on the annual crop yield is particularly significant. Maize and soybean yields show a strong correlation with both Temperature Condition Index (TCI) and Precipitation Condition Index (PCI) in the Great Plains, with a relatively higher relationship with TCI than PCI, which is consistent with the relationship compared with GPP. This study suggests that in-depth investigations into the relationship between maize and soybean yields and the climate are required. The region-dependent relationship between GPP and meteorological conditions in our study would guide agricultural decision making in the future climate
    corecore